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Abstract

First-order reversal curve (FORC) diagrams provide a sensitive means of probing subtle variations in hysteresis behaviour,
and can help advance our understanding of the mechanisms that give rise to hysteresis. In this paper, we use FORC diagrams
to study hysteresis mechanisms in multi-domain (MD) particles. The classical domain wall (DW) pinning model due to
Néel [Adv. Phys. 4 (1955) 191] is a phenomenological one-dimensional model in which a pinning function represents the
interactions of a DW with the surrounding medium. Bertotti et al. [J. Appl. Phys. 85 (1999a) 4355] modelled this pinning
function as a random Wiener–Lévy (WL) process, where particle boundaries are neglected. The results of Bertotti et al. [J.
Appl. Phys. 85 (1999a) 4355] predict a FORC diagram that consists of perfectly vertical contours, where the FORC distribution
decreases with increasing microcoercivity. This prediction is consistent with our experimental results for transformer steel and
for annealed MD magnetite grains, but it is not consistent with results for our MD grains that have not been annealed. Here, we
extend the DW pinning model to include particle boundaries and an Ornstein–Uhlenbeck (OU) random process, which is more
realistic that a WL process. However, this does not help to account for the hysteresis behaviour of the unannealed MD grains.
We conclude that MD hysteresis is more complicated than the physical picture provided by the classical one-dimensional
pinning model. It is not known what physical mechanism is responsible for the breakdown of the classical DW pinning model,
but possibilities include DW interactions, DW nucleation and annihilation, and DW curvature. © 2001 Elsevier Science B.V.
All rights reserved.
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1. Introduction

Hysteresis in multi-domain (MD) systems is a
complex phenomenon that involves domain wall
(DW) nucleation and annihilation, DW pinning, and
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DW interactions. An understanding of MD hysteresis
in its full range of behaviours is beyond present ca-
pabilities. For this reason, MD particle hysteresis has
often been modelled in terms of DW pinning alone
(e.g. Everitt, 1962; Schmidt, 1973; Dunlop and Xu,
1994; Bertotti, 1998), following the classical DW pin-
ning model of Néel (1955). In this model, the compli-
cated curvilinear pattern of DWs, as observed in real
samples, is treated as a collection of non-interacting
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planar DWs. Thus, a bulk sample is treated as if it
were composed of small, non-interacting grains, each
of which is a two-domain system with one planar
DW. It is assumed that each DW travels through a
one-dimensional DW pinning field, which represents
the interactions of that DW with the surrounding
material in a single grain. This pinning field can be
modelled by a random function, and the behaviour of
a bulk sample can be modelled by taking an average
over an assemblage of grains (i.e. with a distribution
of pinning fields). Clearly, this DW pinning model
is overly simplistic and some studies have shown
that it is inadequate for representing the natural MD
samples encountered in paleomagnetism (Halgedahl
and Fuller, 1983; McClelland and Sugiura, 1987;
Shcherbakov et al., 1993). Nevertheless, this model
has been widely used because it is difficult to devise
a tractable model of MD hysteresis.

First-order reversal curve (FORC) diagrams (see
below) provide a sensitive means of probing subtle
variations in hysteresis behaviour. We have used
FORC diagrams to investigate a wide range of magne-
tic particle systems (Pike et al., 1999, 2001; Pike and
Fernandez, 1999; Roberts et al., 2000). In our previous
work, we have adopted a combined experimental and
theoretical approach in developing a framework for
the interpretation of FORC diagrams. The agreement
between experimental data and theory has demon-
strated the usefulness of FORC diagrams as a means
of investigating magnetic hysteresis in fine particle
systems. In this paper, we extend our work with
FORC diagrams to consider hysteresis mechanisms in
MD particle systems. Following other workers (Néel,
1955; Dunlop and Xu, 1994; Dunlop and Özdemir,
1997; Bertotti, 1998; Bertotti et al., 1999a), we use
the classical DW pinning model as a starting point and
then compare this with experimental FORC diagrams
for selected synthetic and natural MD samples.

2. FORC diagrams

A FORC diagram is calculated from a class of
partial hysteresis curves known as FORCs (see May-
ergoyz, 1986). As shown in Fig. 1, the measurement
of a FORC begins by saturating a sample in a large
positive applied field. The field is decreased to a rever-
sal fieldHa, and the FORC is the magnetization curve

Fig. 1. Example of a major hysteresis loop with reversal point at
Ha. FORC is the curve that starts atHa and proceeds back to
positive saturation. A magnetisation at an applied fieldHb on the
FORC with reversal fieldHa is represented byM(Ha, Hb).

that results when the applied field is increased from
Ha back to saturation. By repeating this measurement
for different values ofHa, one obtains a suite of curves
such as those shown in Fig. 2(a). The magnetisation at
the applied fieldHb on the FORC with reversal field
Ha is denoted byM(Ha, Hb), whereH b > H a (Fig. 1).
The FORC distribution is defined as the mixed second
derivative:

ρ(Ha, Hb) ≡ −∂
2M(Ha, Hb)

∂Ha∂Hb
, (1)

whereρ(Ha, Hb) is well defined forH b > H a. When a
FORC distribution is plotted, it is convenient to change
co-ordinates from{Ha, Hb} to {H c = (H b −H a)/2,
H u = (H a +H b)/2}. A FORC diagram is a contour
plot of a FORC distribution withHu andHc on the ver-
tical and horizontal axes, respectively (Fig. 2b).H b >

H a, thereforeH c > 0, and a FORC diagram is con-
fined to the right-hand half plane. TheHc co-ordinate
is referred to as the microcoercivity.

To explain the motivation for calculating this mixed
second derivative and for the change of co-ordinates, it
is necessary to give a brief introduction to the Preisach
model (Preisach, 1935). Let us begin by defining a
simple mathematical construction, which is referred
to as a hysteron. As shown in Fig. 3, the hysteron
denoted byγ αβ equals 1 for large values ofH; it
switches to−1 whenH is belowHα, and it remains
at −1 until H passesHβ . When the second deriva-
tive in Eq. (1) is taken for the hysteresis behaviour
of γ αβ , the resultingρ(Ha, Hb) will have a peak at
H a = Hα andH b = Hβ , and will equal zero else-
where, i.e.ρ(Ha, Hb) will be a point delta function. In
Hc andHu co-ordinates, the FORC distributionρ(Hc,
Hu) will consist of a point delta function atH c =
(Hβ −Hα)/2,H u = (Hα +Hβ)/2. But (Hβ −Hα)/2
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Fig. 2. (a) A set of 33 FORCs for sample CS911 from the Yucca Mountain ash flow tuff, from southern Nevada (see Eick and Schlinger,
1990; Worm, 1999). These FORCs are a subset of the 99 FORCs used for the following FORC diagram. Units used forM are Am2 and
mT for H. (i.e. Am2 = the m is squared). (b) A FORC diagram for sample CS911, which indicates that the magnetic particles are in a
non-interacting single domain state (SF= 2).

is the half-width ofγ αβ , which corresponds to its
coercivity, and(Hα+Hβ)/2 is the horizontal offset of
γ αβ which we refer to as its bias. Hence, on a FORC
diagram, theHc andHu co-ordinates of the point delta
function give the coercivity and bias, respectively, of
this simple hysteron.

Similarly, for a collection of hysterons with a
distribution of coercivities and biases denoted by

Fig. 3. The hysteronγ αβ equals 1 for large values ofH, switches
to −1 when H falls below Hα and remains at−1 until H rises
aboveHβ . The half-width of the hysteron is its coercivity, and the
horizontal offset of its centre is its bias.

P(Hc, Hu), it can be shown that the FORC distri-
bution ρ(Hc, Hu) will be equivalent toP(Hc, Hu).
This type of mathematical hysteresis system, which
consists of a collection of hysterons, is known as the
Preisach model (Preisach, 1935), and the distribu-
tion of coercivities and biases,P(Hc, Hu), is known
as the Preisach distribution. In cases where a mag-
netic particle system can be rigorously represented
by a collection of hysterons, the FORC and Preisach
distributions will be equivalent.

The Preisach model of hysteresis was first sug-
gested as a model of interacting single domain par-
ticles. In this model, each hysteron represents an
individual particle in the assemblage. The coercivity
of a hysteron corresponds to the coercivity of a single
domain particle if it were magnetically isolated from
other particles. The bias of a hysteron corresponds to
a fixed interaction field, which represents the magne-
tostatic interaction of an individual particle with the
surrounding assemblage of particles. The Preisach
distribution therefore corresponds to the distribution
of particle coercivities and interaction fields.

The original motivation in taking the second deriva-
tive in Eq. (1) was that, for single domain particle
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systems, the FORC distributionρ(Hc, Hu) would be
equivalent to the Preisach distribution, and to a dis-
tribution of particle switching and interaction fields.
However, in practice, the hysteresis of an interacting
single domain particle system is more complex and
rich than can be described by a simple superposi-
tion of hysterons. Therefore, the Preisach model is
only a phenomenological construction for modelling
hysteresis in an approximate way, and the Preisach
distribution is not a unique and well-defined quantity.
In contrast to a Preisach distribution, the FORC distri-
butionρ(Hc, Hu) is defined using only magnetisation
data from FORCs, a second derivative, and a change
of co-ordinates. Therefore, it remains a well-defined
quantity regardless of whether a single domain parti-
cle system is consistent with the Preisach model. The
FORC distribution is also a well-defined quantity for
magnetic systems other than single domain particle
assemblages, for which the Preisach model might
have no apparent physical justification. We there-
fore distinguish a FORC distribution from a Preisach
distribution. As shown below, FORC diagrams pro-
vide a useful empirical means of probing hysteresis
behaviour.

Our FORC measurements were made using a
Princeton Measurements Corporation alternating gra-
dient magnetometer. The details of data acquisition
and analysis involved in obtaining a FORC distribu-
tion have been described in detail elsewhere (Roberts
et al., 2000). A certain amount of numerical smoothing
is inherent in the calculation of a FORC diagram from
experimental data: this is quantified by a smoothing
factor (SF), which can vary between 2 for the highest
quality data and 5 for poor quality data. In Fig. 2(b), we
show the FORC diagram calculated (SF= 2) from the
data in Fig. 2(a). The FORC distribution in Fig. 2(b) is
narrowly confined to the centre horizontal axis, which
is characteristic of a collection of non-interacting sin-
gle domain particles. Magnetostatic interactions cause
increased vertical spread of the contour loops about
the peak (Pike et al., 1999; Roberts et al., 2000), while
thermal relaxation of fine single domain particles shifts
the FORC distribution to lower coercivities (Roberts
et al., 2000; Pike et al., 2001). Before considering the
manifestations of MD behaviour on FORC diagrams,
it is instructive to consider the FORC diagrams ex-
pected for the classical DW pinning model of Néel
(1955).

3. FORC diagrams and the classical
DW pinning model

In the phenomenological DW pinning model of
Néel (1955), a bulk sample is treated as an assemblage
of small grains each of which contains one planar
DW, where the DWs are completely non-interacting.
Let us consider one such grain. For simplicity, let us
assume that the DW passes through the cross-section
of the grain which has cross-sectional areaA and
lengthL. Let us assume that the DW moves through
a one-dimensional energy function, which takes into
account all the interactions of that DW with the sur-
rounding medium. Let us represent a grain by a line
segment of lengthL, with end points at 0 andL. If
the DW is located atx, then the magnetisation be-
tween 0 andx will be positive and the magnetisation
betweenx and L will be negative. The total mag-
netic moment of the grain is:M(x) = AMs(L− 2x),
whereMs is the spontaneous magnetisation per unit
volume. Let us denote the energy of the DW as a
function of position byEw(x). The demagnetisation
field Hde will be approximated by the uniform field
−NM, whereN is the demagnetisation factor for this
grain (rather than for the bulk sample) andM is the
magnetic moment of the grain. The demagnetisation
field in this grain is unaffected by the positions of
the other DWs, as must be the case if the DWs are
non-interacting. The demagnetisation energyEde then
becomes

∫M
0 − (µ0Hde)dM = ∫M

0 µ0NMdM = µ0

NM2. The total energyET will be the sum ofEw,
Ede and the Zeeman energy−µ0MH, whereH is the
applied field. So,

ET(x,H)=Ew(x)− µ0M(x)H + 1
2µ0NM(x)2

=Ew(x)− µ0AMs(L− 2x)H

+1
2µ0NA2M2

s (L− 2x)2. (2)

This expression has been used by Dunlop and Xu
(1994) and others in studies of DW pinning.

The hysteresis of this model is governed by the
requirement that the DW will always reside in a min-
imum of ET(x, H), with respect tox. As the applied
field H is increased or decreased, the DW will move
and follow the local energy minimum in which it re-
sides. If the minimum in which it resides vanishes with
changingH, then the DW will make a discontinuous
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drop in energy to the next energy minimum of lower
energy. This is a Barkhausen leap. Rather than work-
ing directly with Ew(x, H), it is convenient to work
with its gradient, which is referred to as the pin-
ning field:H p(x) ≡ −(1/2µ0AMs)(dEw(x,H)/dx).
This pinning field is the critical input that governs the
hysteresis behaviour of the model.

As discussed earlier, for systems that can be rigoro-
usly represented by a collection of hysterons, the
FORC distribution and Preisach distributions will
be equivalent. Bertotti et al. (1999a) showed that
the above-described one-dimensional, non-interacting
DW pinning model, after averaging over a distribution
of pinning fields, can be rigorously described by a
Preisach distribution. Hence, the FORC and Preisach
models are equivalent in this case.

Néel (1955) modelledHp(x) as a collection of equi-
spaced “saw-tooth” pinning sites, where the height
of the “teeth” was a normally distributed random
number. Néel (1955) investigated the Preisach (1935)
distribution of this DW pinning model at low applied
fields (i.e. the Rayleigh region) by neglecting the
effects of demagnetisation energy. He found that the
Preisach (and equivalently the FORC) distribution
has a constant value near the origin. Bertotti et al.
(1999a) and Magni et al. (1999) generalisedHp(x) to

Fig. 4. Results for a distribution of one-dimensional, non-interacting DWs in a WL random process pinning field, from equations given by
Bertotti et al. (1999a). (a) A set of FORCs calculated using Eq. (3) withχ , φ = 1. Note that since Bertotti et al. (1999a) neglected finite grain
boundaries, these FORCs continue indefinitely in the upper right-hand quadrant with slopeχ = 1. (b) A FORC diagram, calculated using
Eq. (4) and the same parameters as above, which consists entirely of vertical contours. (c) Cross-section of the FORC distribution in (b).

a random Wiener–Lévy (WL) process, which is bet-
ter known as Brownian motion in one dimension. In
their mathematical treatment, these authors ignored
the particle boundaries atx = 0 andL, and letx range
over the real line. After averaging over a distribution
of pinning fields, Bertotti et al. (1999a) obtained an
analytical solution for the Preisach (and equivalently
the FORC) distribution. Their result can be written as

M(Ha, Hb) = Haχ + φχ

+
(
χ(Hb −Ha) coth

(
(Hb −Ha)χ

φ

)
− 2φχ

)
,

(3)

where

χ = 1

NAM2
s

and φ = 〈|dHp|2〉
2 dx

.

This gives the Preisach or FORC distribution:

ρ(Hc) = 2

(φ/χ)2

Hc coth(Hcχ/φ)− 1

sinh2(Hcχ/φ)
. (4)

Hence, the Preisach (and equivalently the FORC)
distribution is a decreasing function ofHc, and is
independent ofHu; this implies that the FORC dia-
gram for the DW pinning case will consist of vertical
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contours. To first order inHc, the function in Eq. (4)
has a constant value nearH c = 0, which is consistent
with the result of Néel (1955). In Fig. 4, we show a
set of FORCs generated using Eq. (3) withχ , φ = 1;
we also show the resulting FORC distribution, and a
cross-section of the FORC distribution atH u = 0.
Note that since Bertotti et al. (1999a) ignored parti-
cle boundaries, the FORCs in Fig. 4(a) will continue
indefinitely into the upper right-hand quadrant, with
slopeχ = 1. Later in this paper, we try to give the
reader a more intuitive explanation for the predicted
vertical contours on a FORC diagram.

4. Results — FORC diagrams for synthetic
and natural MD samples

We have studied several MD materials in order to
compare experimental results with theoretical pre-
dictions. M80 steel is an extremely soft magnetic
material, with coercivity<1 mT. The magnetisation
of the M80 sample is almost entirely reversible, and
the irreversible signal is weak. It is therefore difficult
to determineMr/Ms for this sample. We have also
investigated a limited range of natural MD particles,
including a small hand-picked single grain of mag-
netite that was broken off a large crystalline sample
which had crystal faces up to 20 mm across. The
grain was equant and about 2 mm in size. We anal-
ysed this sample before and after annealing (before
annealingH c = 7.5 mT, M r/Ms = 0.078; after
annealingH c = 1.7 mT,M r/Ms = 0.013). The hys-
teresis loop measured before annealing is shown in
Fig. 5(a); annealing substantially lowers the coerciv-
ity and remanence ratio. Annealing was achieved by
heating the sample to 1200◦C for 12 h in evacuated
(10−6 mm Hg) quartz glass ampules. The furnace was
then slowly cooled at 50◦C steps, with a waiting time
of 1 h at each step down to 500◦C. The cooling rate
was about 0.25–0.5◦C/min. The furnace was then
switched off and cooled slowly to room temperature
over a 5 h period.

We also studied a smaller single grain of magnetite
(H c = 1.9 mT, M r/Ms = 0.019), with dimensions
of roughly 125�m from the 150–100�m fraction of
sample HM4 (Fig. 5(b)), as studied by Hartstra (1982).
Finally, we analysed a clay-rich late Pleistocene bulk
sediment with abundant ice-rafted detritus from ocean

Fig. 5. Major hysteresis loops for two of the analysed samples:
(a) a 2 mm magnetite grain before annealing; and (b) a 125�m
magnetite grain. On this scale, the loop in (b) appears to be closed.
Hysteresis parameters for these samples are given in the text.

drilling program (ODP) Hole 887B (H c = 5.9 mT,
M r/Ms = 0.056) from the North Pacific Ocean (see
Roberts et al., 1995, 2000).

M80 transformer steel was selected as an example
of classical DW pinning hysteresis. The weakness of
the irreversible signal makes measurement of a FORC
diagram difficult, however, using a 3 mm× 0.5 mm
rectangular piece of M80, with the long direction
parallel to the applied field, we acquired the FORC
diagram shown in Fig. 6(a) (SF= 3). This dia-
gram consists of vertical contour lines and a FORC
distribution that decreases with increasingHc. This
behaviour is opposite to that of the horizontally elon-
gated contour loops exhibited by the non-interacting
single domain sample shown in Fig. 2(b).

FORC diagrams were acquired after and before an-
nealing for the 2 mm magnetite sample (Fig. 6(b) and
(c)). We also acquired a FORC diagram for the 125�m
magnetite from sample HM4 (Fig. 6(d)). In Fig. 7, we
show a typical MD result from bulk sediment from
ODP Hole 887B (see Roberts et al., 1995, 2000). We
refer to this type of FORC distribution as a diverging
contour pattern because the contours diverge from the
H u = 0 axis and intersect theH c = 0 axis. Similar
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Fig. 6. FORC diagrams (SF= 3) for (a) a sample of M80 transformer steel; (b) a 2 mm grain of magnetite, after annealing; (c) the same
2 mm grain of magnetite before annealing; and (d) a 125�m magnetite grain (no annealing) from sample HM4 (see Hartstra, 1982).

contour patterns have also been observed in Preisach
diagrams for natural MD samples (e.g. Mullins and
Tite, 1973; Ivanov et al., 1981; Ivanov and Sholpo,
1982; Zelinka et al., 1987; Hejda and Zelinka, 1990;
Dunlop et al., 1990; Fabian and von Dobeneck, 1997).
Roberts et al. (2000) showed, empirically, that natural
samples located further in the MD direction on a Day
plot (Day et al., 1977) have FORC distributions with
larger degrees of divergence.

Fig. 7. FORC diagram (SF= 4) for an assemblage of MD particles
in sample ODP 887B-2H-6-70 from the North Pacific Ocean (see
Roberts et al., 1995).

The measured FORC diagram for our M80
transformer steel sample (Fig. 6(a)) is consistent with
the analytical result of Bertotti et al. (1999a) for DW
pinning with a WL process (Fig. 4(b)). That is, the
diagram consists of vertical contours, with a FORC
distribution function that decreases with increasing
Hc. This result indicates that the simple classical
model, although it is based on a dubious physical pic-
ture, somehow captures the physics of the hysteresis
mechanisms in this sample. The FORC distribution
for the 2 mm-sized magnetite grain after annealing
(Fig. 6(b)) also has vertical contours consistent with
those of the transformer steel and the result of Bertotti
et al. (1999a). However, the FORC diagram for the
2 mm grain before annealing (Fig. 6(c)) is inconsistent
with the result of Bertotti et al. (1999a) and the FORC
diagram for the 125�m magnetite (Fig. 6(d)) is in-
termediate between the results for the annealed and
unannealed 2 mm magnetite sample. The inconsis-
tency between the results for the annealed and unan-
nealed samples implies that stress might be responsible
for the deviation. Exactly how stress gives rise to this
pattern is unknown. We suggest that in the annealed
state, the pinning sites are homogeneously distributed
throughout the sample in a manner that is consistent
with a random process. In the unannealed state, how-
ever, with stress present, “pinning” might occur on
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length scales comparable with the particle size. Thus,
for example, stress might resist the movement of DWs
from one end of the particle to the opposite end. In
this case, the result of Bertotti et al. (1999a) would be
inapplicable. It should also be noted that the results for
the unannealed grain are highly asymmetrical about
the central horizontal axis (Fig. 6(c)). This implies
that the Preisach model is no longer a valid model of
hysteresis for this sample, which also implies that the
non-interacting one-dimensional classical DW model
is no longer valid. It should also be noted that in
Fig. 6(c) and (d) the darkest shadings indicate negative
regions of the FORC distribution. This is also incom-
patible with the classical model. The results for our
natural MD sediment sample (Fig. 7) are also not con-
sistent with the Néel (1955) model in any obvious way.

5. Numerical DW pinning model calculations

In this section, we attempt to give the reader a
more intuitive conceptual understanding for the re-
sult of Bertotti et al. (1999a) (i.e. that the classical
DW pinning model predicts vertical lines on a FORC
diagram). We also extend the (analytical) result of
Bertotti et al. (1999a) with numerical calculations.
Bertotti et al. (1999a) assumed that a pinning field
can be represented by a WL process. Unfortunately,
the WL process is not rigorously acceptable as a
representation of the pinning fieldHp(x) for the fol-
lowing reason. If the values of a WL process are
collected over a long interval ofx, the result will not
be a stable distribution of values. Instead, the spread
of this distribution will increase withx, without limit
(a random process with this property is referred to as
a non-stationary process). Therefore, the WL process
should be replaced with an Ornstein–Uhlenbeck (OU)
random process, which is essentially a damped version
of the WL process. Over a long enough interval ofx,
the collected values of an OU process will approach a
limiting distribution with Gaussian form. This makes
it acceptable as a model ofHp(x). We therefore extend
the model to an OU process. We note that Bertotti
et al. (1999b) obtained an analytical expression for
ρ(hc) in the case of an OU process, however, the
solution is not in closed form and must be numer-
ically solved. To our knowledge, this has not been
done before. In addition, the solution of Bertotti et al.

(1999a) neglects particle boundaries. We, therefore,
incorporate particle boundaries into our calculations.

5.1. Sinusoidal DW energy

The mechanics of DW pinning hysteresis are easier
to conceptualise if we begin by considering a sinu-
soidal DW energy. For the sake of simplicity, letA,
Ms andµ0 = 1, so that Eq. (2) becomes

ET(x,H)=Ew(x)−(L− 2x)H+1
2N(L− 2x)2. (5)

Next, letEw(x) = Ep/15π cos[(L− x)(15π/2)] and
L = N = 1 andEp = 1. In Fig. 8(a), we show the re-
sulting energy functionET(x, H) nearx = 0 for several
applied fields. AtH = 1.85 (i.e. positive saturation),
ET(x, H) has a positive slope everywhere. This implies
that the DW is located atx = 0, or equivalently, it is
annihilated; the magnetisation is positive everywhere.
WhenH is ramped down to 0.95, a global minimum is
still present atx = 0 on the left-hand side of the first
pinning site; the stable low-energy state of the DW
will therefore still be atx = 0. To the right of the first
pinning site is a local minimum, which is a meta-stable
location of the DW. WhenH is ramped down to 0.7, the
minimum on the left-hand side of the first site is now
only a local minimum (as opposed to a global mini-
mum) and the DW is pinned here in a meta-stable lo-
cation. WhenH is ramped down to 0.01, the minimum
on the left-hand side of the first pinning site vanishes,
and the DW makes a Barkhausen leap to the left-hand
side of the second pinning site, which is still a local
minimum. As the applied fieldH is decreased further
on the major hysteresis loop, the DW will always be
located at the minimum ofET(x, H) closest tox = 0.
The location of the DW on the descending hysteresis
loop will be denoted bydHL(H) and can be written as

dHL(H)= min[x : 0 ≤ x ≤ L :

x is a local minimum ofET(x,H)]. (6)

With this sinusoidal DW energy, the descending
major hysteresis loop will have a Barkhausen leap for
every maximum ofEw(x).

On a FORC, when the applied field is increased
from a reversal pointHa to a field Hb, the location
of the DW will be denoted bydFORC(Ha, Hb). It can
be shown that, on a FORC, the DW will be located
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Fig. 8. (a) Total energy as a function of DW positionx for various applied fieldsH calculated with sinusoidal DW energy in Eq. (5) for
Ep = L = N = 1. The curly lines on the vertical axis represent breaks where the scale has been changed to emphasise the features on
each curve. (b) A set of calculated FORCs forEp = L = N = 1. Calculated FORC diagrams for (c)Ep = L = N = 1; (d) Ep = 1.4; (e)
N = 1.3; and (f)L = 1.3.

at the minimum ofET closest to, but less than,x =
dHL(H a). This can be written as

dFORC(Ha, Hb)

= max[x : 0 ≤ x ≤ dHL(Ha) :

x is a local minimum ofET(x,Hb)]. (7)

We used Eqs. (5)–(7), withEp = 1 andL = N = 1,
to calculate the FORCs in Fig. 8(b). Note thatEw(x)
has 15 peaks, or pinning sites, betweenx = 0 and
1. Consistent with this, the hysteresis behaviour in
Fig. 8(b) can be decomposed into 15 hysterons. The
demagnetisation field has horizontally spread these

hysterons apart, so that each hysteron has a differ-
ent bias. Similarly, in the resulting FORC diagram
(Fig. 8(c)) there are 15 peaks present with an even
vertical spacing (although not all the peaks are iden-
tifiable with the resolution of this diagram). Note that
the pinning field isH p(x) = Ep sin[(L/2 − x)15π ]
which has a maximum value of 1. The microcoer-
civity of the above-described hysterons is, to a good
approximation, equal to this maximum pinning field.
Hence, the peaks on the FORC diagram are all located
at H c ≈ 1. The fact that the peak in Fig. 8(c) is lo-
cated at slightly less thanH c = 1 is due to the fact
that the pinning sites have widths of the same order as
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L, and, hence, the demagnetisation field changes from
one side of the pinning site to the other. If the width
of the pinning sites was decreased, while keeping the
maximum pinning field constant, then the distribution
would approachH c = 1 exactly.

WhenEp is increased to 1.4 and the FORC diagram
is recalculated (Fig. 8(d)), the microcoercivity of the
peaks proportionately increases. When the demag-
netisation constantN is increased to 1.3 (Fig. 8(e)),
the vertical spread between peaks increases. WhenL
is increased to 1.3 (Fig. 8(f)), the number of peaks
increases but the spacing between peaks remains
fixed. Hence, increasing the particle size and increas-
ing N both give rise to a greater demagnetisation
field and to greater vertical spread of the FORC dis-
tribution. However, increasingL also increases the
number of pinning sites in a particle. The above
treatment provides a simplified demonstration of how
the parametersEp, N, and L influence hysteresis
behaviour and the resulting FORC diagram, in a
simple one-dimensional DW pinning model.

5.2. The pinning field

In the previous section, we solved fordHL(H) by
numerically locating the earliest local minimum ofET
(x, H) with increasingx (see Eq. (6)). Alternatively,
we can solve fordHL(H) by locating the earliest point,
with increasingx, where the derivative ofET(x, H) is
greater than zero. Hence, Eq. (6) can be rewritten as

dHL(H) = min

[
x : 0 ≤ x ≤ L :

dET(x,H)

dx
> 0

]
.

(8)

Similarly, Eq. (7) can be written as

dFORC(Ha, Hb)= max

[
x : 0 ≤ x ≤ dHL(Ha) :

dET (x,H)

dx
< 0

]
. (9)

At this point it is useful to rewrite Eq. (2) with
the following scaled quantities:h ≡ H/µ0NAMs,
m ≡ M/AMs, ew ≡ Ew/µ0A

2NM2
s, and et ≡ ET/

µ0A
2NM2

s. Thenet becomes dimensionless:

et(x, h)= ew(x)− hm+ 1
2m

2

= ew(x)− h(L− 2x)+ 1
2(L− 2x)2. (10)

The derivative ofet(x, h) is

det(x, h)

dx
= dew(x)

dx
+ 2h− 2(L− 2x). (11)

The scaled pinning field is denoted byhp(x)≡−(1/2)
dew(x, h)/dx. Eqs. (8) and (9) can be rewritten as

dHL(h)= min[x : 0 ≤ x ≤ L : h > hp(x)

+(L− 2x)], (12)

and

dFORC(ha, hb)= max[x : 0 ≤ x ≤ dHL(ha) :

h < hp(x)+ (L− 2x)], (13)

where hde ≡ −(1/2)dede(x, h)/dx = (L − 2x) is
the demagnetisation field. Hence, rather than working
with the domain wall energy directly, we can work
with its pinning field, which is the approach taken in
most studies of DW pinning hysteresis (Néel, 1955;
Dunlop and Özdemir, 1997; Bertotti, 1998).

Let us illustrate a simple method of graphically
solving for dHL(h) and dFORC(ha, hb). In Fig. 9(a),
we have plotted a hypotheticalew(x) for 0 ≤ x ≤ L,
whereL = 1. In Fig. 9(b), we plot the sum ofew(x)
and the demagnetisation energy,ede = (1 − 2x)2/2.
In Fig. 9(c), we plot the pinning fieldhp(x). Note that
the DW energy is made up of parabolic curves, so
that its derivative (i.e. the pinning field) is made up
of line segments. This form ofhp(x) is referred to as
a saw-tooth function (Néel, 1955). In Fig. 9(d), we
plot the sum ofhp(x) and the demagnetisation field,
hde = (1−2x). The lower branch of the dashed curve
in Fig. 9(d) illustrates the graphical solution of the
upper major hysteresis loop, down to abouth = −1.
The upper branch of the dashed curve represents the
solution of a FORC with reversal field at about−1.
The vertical co-ordinate of this dashed curve is the
applied field,h, while the horizontal co-ordinate is
the position of the domain wall as a function of app-
lied field. Where this dashed curve is horizontal, a
Barkhausen leap occurs. Similar diagrams are found
in Néel (1955) and Bertotti et al. (1999a).

A more detailed illustration of this graphical
solution method is shown in Fig. 9(e), where we have
expandedhp + hde from Fig. 9(d) nearx = 0. To
solve Eq. (12) for the DW position on the upper ma-
jor hysteresis loop, we need to find the earliestx such
that h ≥ hp + hde. For largeh, this is justx = 0.
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Fig. 9. (a) Hypothetical domain wall energyew for x = 0 to 1;
(b) sum ofew and the demagnetisation energy,ede; (c) the pinning
field hp; (d) the sum ofhp and the demagnetisation field,hde. The
lower branch of the dashed line in (d) is a graphical solution of
the DW location on the descending hysteresis loop, with a reversal
field at abouth = −1. The upper branch is a graphical solution
of a FORC. A more detailed illustration of this graphical solution
method is shown in (e), as described in the text.

Therefore, the domain wall is located atx = 0, and
the magnetisation is positive everywhere. Whenh
passes below about 1.6, the DW starts moving re-
versibly from points (i) to (ii), as labelled in Fig. 9(e).
Whenh passes below about−0.3, the DW makes an
irreversible Barkhausen leap from points (ii) to (iii),
passing over a pinning site in between. Let us suppose
that the applied field is reversed at abouth = −0.3,
and a FORC measurement is started. To solve Eq. (13)
for the DW position on a FORC, we need to find the
greatestx such thath ≤ hp + hde and such that the
DW is to the left of its position at the reversal point.
Hence, ash is increased from the reversal field (at
abouth = −0.3), the DW will travel reversibly from

(iii) to (iv). Barkhausen leaps will then occur between
(iv) and (v) and between (vi) and (vii). When the DW
reaches (vii), the system will have reached positive
saturation. Hence, a graphical solution of Eqs. (12)
and (13) is obtained for the descending major hys-
teresis loop and for a FORC. This graphical solution
method is useful for understanding the hysteresis
behaviours of DW pinning described in the next
section.

5.3. Random pinning function

Next, let us modelhp as an OU process. This is
written as follows:

dhp(x)

dx
+ hp(x)

ξh
= dW

dx
, (14)

whereW is a WL process such that

dW = 0, 〈|dW |2〉 = 2Ah2 dx

ξh
, (15)

and whereξh is a correlation length. Thehp(x)/ξh
term in Eq. (14) dampshp(x), resulting in a stationary
process. Magni et al. (1999) showed thathp generated
by Eq. (14–15) has varianceAh2.

To numerically generatehp(x) let us dividex =
{0, L} into NL intervals. Lethp(i) represent the value
of hp at discrete pointsx = i(L/NL), where 0≤ i ≤
NL. Let us replace dW/dx in Eq. (14) on each interval
with a constant value. We can treat these intervals as
a type of correlation lengthξs ≡ L/NL in the random
term dW/dx of Eq. (14). Let the value of dW/dx on
the ith interval be given byRΩ

√
(2/ξsξh), whereR

is randomly selected from a normal distribution with
mean zero and variance 1. It can be numerically shown
that forξs/ξh values much smaller than 1, the variance
of hp(i) is approximated byΩ2. Eq. (14) becomes

hp(i + 1)− hp(i)

(L/NL)
+ hp(i)

ξh
= RΩ

√
2

ξsξh
, (16)

or

hp(i + 1) = hp(i)

[
1 − ξs

ξh

]
+ RΩ

√
2ξs
ξh
, (17)

where the initial conditionhp(0) is randomly generated
from the stationary distribution ofhp(i). In Fig. 10(a)
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Fig. 10. Pinning fieldhp for x = 0–0.2, generated using Eq. (17) withi = 1–20,000, wherex = i(L/NL), L = 1, NL = 100,000,
Ω = 0.444064 and (a)ξs/ξh = 0.01 and (b)ξs/ξh = 0.001. FORC diagrams calculated for:Ω = 0.444064, (c)ξs/ξh = 0.01 and (d)
ξs/ξh = 0.001. FORC diagrams calculated for:Ω = 0.0111016, (e)ξs/ξh = 0.01 and (f)ξs/ξh = 0.001.

and (b), we plothp as a function ofx = i(L/NL),
for i = 1 to 20,000,L = 1, NL = 100,000,Ω =
0.444064, andξs/ξh = 0.01 and 0.001, respectively.
Although the two random functions have approxi-

mately the same variance, the function with larger
ξs/ξh varies more rapidly (Fig. 10a and b).

In this discretized model, the DW locationd beco-
mes an integer between 0 andNL; the magnetisation
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becomesm = L(1−(2d/NL)), and Eqs. (12) and (13)
become

dHL(h)= min

{
i : 0 ≤ i ≤ NL : h ≥ hp(i)

+L
[
1 − 2i

NL

]}
, (18)

and

dFORC(ha, hb) = max{i : 0 ≤ i ≤ dHL(ha) :

h ≤ hp(i)+ L

[
1 − 2i

NL

]}
. (19)

FORCs and FORC diagrams were calculated for
a distribution of grains. We first letΩ = 0.444064,
NL = 100,000,L = 1, andξs/ξh = 0.01. The result-
ing FORC distribution (Fig. 10(c)) is vertically elon-
gated, which, as demonstrated by the sinusoidal model
(Fig. 8(c)–(f)), is due to the demagnetisation field. The
distribution is peaked at a microcoercivity ofhc = 1.4,
which we refer to as the dominant pinning fieldhdp.
The reason why the distribution is peaked at a domi-
nant pinning field can be explained as follows. First,
let us consider the case where there is no demagneti-
sation field, and only a random pinning fieldhp, such
as in Fig. 10(a). Suppose, the applied field is increas-
ing and consider a DW that is pinned at a site with
pinning fieldh∗

p. If the applied field continues to in-
crease, and if the DW becomes unpinned from this site,
then it will pass over all pinning sites with strength
less thanh∗

p, until it reaches a site with pinning field
greater than or equal toh∗

p. Hence, as the DW moves, it
will be pinned by progressively stronger pinning sites
without limit. But, when we superimpose the random
pinning field on the downward drift of a demagnetisa-
tion fieldhde, as shown in Fig. 11, the above-described
DW can be stopped by a field slightly weaker than
h∗

p. Thus, as a DW moves with increasing field, it will
initially be pinned at progressively stronger pinning
sites, but this process will rapidly reach a limit and the
strength of the pinning field will converge to a dom-
inant pinning field. As the DW continues to move,
pinning sites weaker thanhdp will be passed over by
the DW, and sites stronger thanhdp will occur too
infrequently to pin the wall over a statistically sig-
nificant fraction of its movement. In effect, our treat-
ment of the movement of a DW in the random pinning
field shown in Fig. 10(a) can be simplified by keeping

Fig. 11. Pinning fieldhp summed with a demagnetisation field
hde for x = 0–0.2. The value ofhp(x) is generated using Eq. (17)
with i = 1–20,000, wherex = i(L/NL), L = 1, NL = 100,000,
Ω = 0.0111016, andξs/ξh = 0.001. The value ofhde is equal to
N(L− 2x) whereN = 1.

only sites with pinning strength close tohdp or −hdp.
On a FORC diagram, these pinning sites will give
rise to hysterons with microcoercivity ofhdp. Hence,
on a FORC diagram, the distribution will be peaked
at hc = hdp.

Whenξs/ξh was decreased to 0.001 and the FORC
diagram recalculated (Fig. 10(d)), we found that the
dominant pinning fieldhdp was reduced. This reduc-
tion can be explained as follows. A decrease inξs/ξh
will causehp to vary more slowly (Fig. 10(b)). If the
variation ofhp is slower, this means that when a DW
becomes unpinned from a site with strengthh∗

p, the
probability that it will be stopped at a pinning site
weaker thanh∗

p is increased. Hence, the dominant
pinning field will be reduced.

We next decreased the pinning field strength by de-
creasingΩ to 0.0111016, and recalculated the FORC
diagrams forξs/ξh = 0.01 and 0.001 (Fig. 10(e)
and (f), respectively). The FORC distribution now
has greater height than width, so we do not show the
entire vertical extent of the distribution. As expected,
a reduction inΩ causes a reduction in the dominant
pinning fieldhdp (compare Fig. 10(e) and (f) with (c)
and (d), respectively). However, forξs/ξh = 0.001,
the FORC distribution appears to have become a de-
caying function for all values ofhc (Fig. 10(f)) in the
neighbourhood of the origin. We argue that, in the
limit of weak pinning fields and fixedξs/ξh, the FORC
distribution should approach a decreasing function for
all hc, consistent with the analytical result of Bertotti
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et al. (1999a) (Eqs. (3) and (4)) for a WL process
pinning field (Fig. 4(b)). The argument is that, with
a weak pinning field, the idea of a dominant pinning
field for an individual DW, as described above, loses
its validity. But, we are considering a statistical dis-
tribution of DWs. Thus, by the same arguments made
above, as the applied field is increased, a distribution
of DWs will tend to become pinned by a stable statis-
tical distribution of pinning strengths. In the limit of
a weak pinning field, the DWs will reach this stable
distribution after moving only a small distance. It can
be shown from Eq. (14) that in the limit of small
distances, the OU process is equivalent to a WL pro-
cess. Hence, in the limit of a weak pinning field (and
fixed ξs/ξh), pinning with an OU process pinning
field becomes equivalent to pinning by a WL process
field.

6. Discussion

Our numerical modelling demonstrates that a
one-dimensional DW pinning model with an OU
process pinning function and particle boundaries gen-
erates a FORC distribution with a vertically elongated
peak, located athc = pd, wherepd is the dominant
pinning field. In the limit of weak pinning fields,
pd goes to zero (Fig. 10(f)) and the model becomes
equivalent to the WL process studied by Bertotti
et al. (1999a) (see Fig. 4(b)). The FORC distribu-
tion becomes a decreasing function ofhc only, with
vertical contours in the neighbourhood of the origin
(Fig. 10(f)). This result is consistent with experimen-
tal FORC diagrams for M80 transformer steel and for
an annealed 2 mm magnetite grain (Fig. 6(a) and (b))
where DW pinning is dominant. However, this result
is inconsistent with empirical FORC distributions for
unannealed 2 mm magnetite and other natural MD
particles (Figs. 6(c) and (d) and 7). We, therefore,
conclude that the classical DW pinning model is inad-
equate for explaining hysteresis mechanisms in these
MD samples.

The FORC distribution in Fig. 6(d) is highly elon-
gated in the vertical direction. It might be possible to
approximate this system, to first order, as a classical
DW pinning system, with some additional mecha-
nism present as a relatively small perturbation. The
nature of this additional mechanism is not known;

possibilities include DW nucleation and annihilation,
DW interactions, and DW curvature. Whatever mod-
els might be proposed to describe hysteresis in MD
particles, FORC diagrams will provide a sensitive test
of their validity.

7. Conclusions

The classical DW pinning model, which was the
starting point for this paper, is a highly simplified
one-dimensional model of non-interacting planar
DWs. We have shown that this model is consistent
with hysteresis in bulk transformer steel and in an-
nealed grains of magnetite on the scale of 2 mm.
However, in our unannealed grains, where stress is
present, the hysteresis behaviour is inconsistent with
the classical model. The exact cause of this incon-
sistency is unknown: possibilities include DW nucle-
ation and annihilation effects, DW interactions, and
DW curvature.

We have used numerical calculations to extend
the classical DW pinning model beyond the (analy-
tical) result of Bertotti et al. (1999a), to include an
OU process pinning function and grain boundaries.
These extensions give us a better understanding of
the classical model, but have not helped account
for the unexplained hysteresis behaviours observed
in our data. Furthermore, the fact that FORC dia-
grams for our unannealed samples are asymmetrical
implies that the non-interacting one-dimensional clas-
sical DW model is not valid for such materials. It is
therefore likely that a new model, which will prob-
ably also be phenomenological in nature, is needed
to account for experimental data from many natural
MD samples.

Acknowledgements

We are grateful to two anonymous reviewers and to
Michel Prévot for constructive comments that helped
to improve the paper. This work was supported by the
University of Southampton Annual Grants Scheme,
the Center for Statistics in Science and Technology
at the University of California, Davis, and the US
National Science Foundation (EAR-9909468).



C.R. Pike et al. / Physics of the Earth and Planetary Interiors 126 (2001) 11–25 25

References

Bertotti, G., 1998. Hysteresis in Magnetism. Academic Press,
London.

Bertotti, G., Basso, V., Magni, A., 1999a. Stochastic dynamics in
quenched-in disorder and hysteresis. J. Appl. Phys. 85, 4355–
4357.

Bertotti, G., Mayergoyz, I.D., Basso, V., Magni, A., 1999b.
Functional integration approach to hysteresis. Phys. Rev. E 60,
1428–1440.

Day, R., Fuller, M., Schmidt, V.A., 1977. Magnetic hysteresis
properties of synthetic titanomagnetites. Phys. Earth Planet. Int.
13, 260–266.

Dunlop, D.J., Özdemir, Ö., 1997. Rock Magnetism: Fundamentals
and Frontiers. Cambridge University Press, Cambridge.

Dunlop, D.J., Xu, S., 1994. Theory of partial thermoremanent
magnetization in mulitdomain grains. Part 1. Repeated identical
barriers to wall motion (single microcoercivity). J. Geophys.
Res. 99, 9005–9023.

Dunlop, D.J., Westcott-Lewis, M.F., Bailey, M.E., 1990. Preisach
diagrams and anhysteresis: do they measure interactions? Phys.
Earth Planet. Int. 65, 62–77.

Eick, P.M., Schlinger, C.M., 1990. The use of magnetic
susceptibility and its frequency dependence for delineation of
a magnetic stratigraphy in ash-flow tuffs. Geophys. Res. Lett.
17, 783–786.

Everitt, C.W.F., 1962. Thermoremanent magnetisation. Part III.
Theory of multidomain grains. Philos. Mag. 7, 599–616.

Fabian, K., von Dobeneck, T., 1997. Isothermal magnetization of
samples with stable Preisach function: a survey of hysteresis,
remanence, and rock magnetic parameters. J. Geophys. Res.
102, 17659–17677.

Halgedahl, S., Fuller, M., 1983. The dependence of magnetic
domain structure upon magnetization state with emphasis upon
nucleation as a mechanism for pseudo-single-domain behavior.
J. Geophys. Res. 88, 6505–6522.

Hartstra, R.L., 1982. Grain-size dependence of initial susceptibility
and saturation magnetization-related parameters of four natural
magnetites in the PSD-MD range. Geophys. J. R. Astron. Soc.
71, 465–477.

Hejda, P., Zelinka, T., 1990. Modelling of hysteresis processes in
magnetic rock samples using the Preisach diagram. Phys. Earth
Planet. Int. 63, 32–40.

Ivanov, V.A., Sholpo, L.Y., 1982. Quantitative criteria for single-
and multi-domain states in ferromagnetic minerals in rocks.
Izvestiya Earth Phys. 18, 612–616.

Ivanov, V.A., Khaburzaniya, I.A., Sholpo, L.Y., 1981. Use of
Preisach diagram for diagnosis of single- and multi-domain
grains in rock samples. Izvestiya Earth Phys. 17, 36–43.

Magni, A., Beatrice, C., Durin, G., Bertotti, G., 1999. Sto-
chastic model for magnetic hysteresis. J. Appl. Phys. 86,
3253–3261.

Mayergoyz, I.D., 1986. Mathematical models of hysteresis. IEEE
Trans. Magn. MAG-22, 603–608.

McClelland, E., Sugiura, N., 1987. A kinematic model of TRM
acquisition in multidomain magnetite. Phys. Earth Planet. Int.
46, 9–23.

Mullins, C.E., Tite, M.S., 1973. Preisach diagrams and magnetic
viscosity phenomena for soils and synthetic assemblies of iron
oxide grains. J. Geomag. Geoelectr. 25, 213–229.

Néel, L., 1955. Some theoretical aspects of rock magnetism. Adv.
Phys. 4, 191–243.

Pike, C.R., Fernandez, A., 1999. An investigation of magnetic
reversal in submicron-scale Co dots using first order reversal
curve diagrams. J. Appl. Phys. 85, 6668–6676.

Pike, C.R., Roberts, A.P., Verosub, K.L., 1999. Characterizing
interactions in fine magnetic particle systems using first order
reversal curves. J. Appl. Phys. 85, 6660–6667.

Pike, C.R., Roberts, A.P., Verosub, K.L., 2001. FORC diagrams
and thermal relaxation effects in magnetic particles. Geophys.
J. Int. 145, 721–730.

Preisach, F., 1935. Über die magnetische Nachwirkung. Z. Phys.
94, 277–302.

Roberts, A.P., Pike, C.R., Verosub, K.L., 2000. FORC diagrams:
a new tool for characterizing the magnetic properties of natural
samples. J. Geophys. Res. 105, 28461–28475.

Roberts, A.P., Verosub, K.L., Weeks, R.J., Lehman, B., Laj, C.,
1995. Mineral magnetic properties of middle and late Pleisto-
cene sediments at ODP sites 883, 884 and 887, North
Pacific Ocean. Proc. Ocean Drilling Prog. Sci. Res. 145,
483–490.

Shcherbakov, V.P., McClelland, E., Shcherbakova, V.V., 1993. A
model of multidomain thermoremanent magnetization incor-
porating temperature-variable domain structure. J. Geophys.
Res. 98, 6201–6216.

Schmidt, V.A., 1973. A multidomain model of thermoremanence.
Earth Planet. Sci. Lett. 20, 440–446.

Worm, H.-U., 1999. Time-dependent IRM: a new technique for
magnetic granulometry. Geophys. Res. Lett. 26, 2557–2560.

Zelinka, T., Hejda, P., Kropacek, V., 1987. The vibrating-sample
magnetometer and Preisach diagram. Phys. Earth Planet. Int.
46, 241–246.


